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Overview

e Introduction and Background

e Modular Dialogue System
o  Spoken/Natural Language Understanding (SLU/NLU)
o Dialogue State Tracking (DST)
o Dialogue Policy
o Natural Language Generation (NLG)

e End-to-End Learning for Dialogue Systems
e Conclusion
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Apple Siri (2011) Google Now (2012) Microsoft Cortana (2014)

Amazon Alexa/Echo (2014) Facebook M & Bot (2015) Google Home (2016)




Dialogue System

Task-Oriented

e Personal assistant, achieve a
certain task

e Combination of rules and statistical
components

O
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POMDP for spoken dialog systems
(Williams and Young, 2007)

Learning End-to-End Goal-oriented
Dialog (Antoni and Weston, 2016)

An End-to-End Trainable Task-oriented
Dialogue System (Wen el al., 2016)

Chit-Chat

e No specific goal, focus on
conversation flow

e \Work using variants of seq2seq
model

o

A Neural Conversation Model (Vinyals
and Le, 2015)

Deep Reinforcement Learning for
Dialogue Generation (Li et al., 2016)
Conversational Contextual Cues: The
Case of Personalization & History for
Response Ranking (AlRfou et al., 2016)



Dialog System Pipeline

Natural Language Understanding

v

Dialog Management

v

Natural Language Generation
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Task-Oriented Dialogue System

Speech Signal Hypothesis
are there any action movies to
see this weekend Language Understanding (LU)
) Speech * Domain Identification
' Recognition * User Intent Detection

Text Input * Slot Filling
- Are there any action movies to see this weekend?

Semantic Frame
" :
N request_movie
gen re=action, date=this weekend

Dialogue Management (DM)
* Dialogue State Tracking (DST)
* Dialogue Policy

( Natural Language

Text response t Generation (NLG)
Where are you located?

System Action/Policy
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Semantic Frame Representation

e Requires a domain ontology
e Contains core content (intent, a set of slots with fillers)

Restaurant
Domain

/[ find a cheap taiwanese restaurant in oakland]

Ctype> find_restaurant (price=“cheap”,
type="“taiwanese”, location="oakland”)
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Database / Ontology

Domain-specific table

Target and attributes
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Functionality

Information access
Finding the specific entries from the table
E.g. available theater, movie rating, etc.
Task completion

Finding the row that satisfies the constraints
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Dialogue Schema

Slot: domain-specific attributes
Columns from the table

e.g. theater, date
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Dialogue Schema

Dialogue Act: inform, request, confirm (system only)
Task-specific action (e.g. book_ticket)

Others (e.g. thanks)

User Intent System Action
= Dialogue Act + Slot = Dialogue Act + Slot

Find me the Bill Murray’s movie.

‘request(moviename; actor=Bill Murray)

[ When was it released? }\
request(releaseyear)

I\

User Bot

I think it came out in 1993.
inform(releaseyear=1993)
iPavlov.



Task-Oriented Dialogue System

Speech Signal Hypothesis
are there any action movies to
see this weekend Language Understanding (LU)
) Speech * Domain Identification
' Recognition * User Intent Detection

Text Input * Slot Filling
- Are there any action movies to see this weekend?

Semantic Frame
" :
N request_movie
gen re=action, date=this weekend

Dialogue Management (DM)
* Dialogue State Tracking (DST)
* Dialogue Policy

( Natural Language

Text response t Generation (NLG)
Where are you located?

System Action/Policy
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Dialog Management

I sample problem

S: where would you like to fly from?
U: [Boston/0.45]; [Austin/0.30]

S: sorry, did you say you wanted to fly from Boston?
U: [No/0.37] + [Aspen / 0.7]

Updated belief = ?
[Boston/?; Austin/?; Aspen/?]

. DIALOGUE MANAGER
. semantic
semantic

int tati interpretations
intolpreatons with confidence action

=

score

‘ Confidence ‘
Annotator
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Dialog Policy Optimization

User

'))) \

Natural Language Generation Language Understanding

Action A \ RewardR [ Observation O

Dialogue Manager | Agent

Environment

Optimized dialogue policy selects the best action that can maximize the future reward.
Correct rewards are a crucial factor in dialogue policy training
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Reward for Reinforcement Learning

e Dialogue is a special RL task
o Human involves in interaction and rating (evaluation) of a dialogue
o  Fully human-in-the-loop framework

e Rating: correctness, appropriateness, and adequacy

- Expert rating

high quality, high cost

- User rating

unreliable quality, medium cost

- Objective rating

iPavlov.

Check desired aspects, low cost




Reward for Reinforcement Learning

e Typical Reward Function
o per turn penalty -1
o Large reward at completion if successful

e Typically requires domain knowledge
o Simulated user
o Paid users (Amazon Mechanical Turk)
o Real users
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User Simulation

e (Goal: generate natural and reasonable conversations to enable reinforcement
learning for exploring the policy space

e Approach

o Rule-based crafted by experts (Li et al., 2016)
o Learning-based (Schatzmann et al., 2006)

Dialogue
Corpus

‘\5 Simulated User

A

Real User Interaction

Dialogue Management (DM)
* Dialogue State Tracking (DST)
* Dialogue Policy
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Task-Oriented Dialogue System

Speech Signal Hypothesis
are there any action movies to
see this weekend Language Understanding (LU)
) Speech * Domain Identification
' Recognition * User Intent Detection

Text Input * Slot Filling
- Are there any action movies to see this weekend?

Semantic Frame
" :
N request_movie
gen re=action, date=this weekend

Dialogue Management (DM)
* Dialogue State Tracking (DST)
* Dialogue Policy

( Natural Language

Text response t Generation (NLG)
Where are you located?

System Action/Policy
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Natural Language Generation

Mapping semantic frame into natural language

inform(name=Seven_Days, foodtype=Chinese)

4

Seven Days is a nice Chinese restaurant
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Template-Based Generator

Semantic Frame Natural Language

confirm() “Please tell me more about the product your are
looking for.”

confirm(area=SV) “Do you want somewhere in the SV?”

confirm(food=SV) “Do you want a SV restaurant?”

confirm(food=SV,area=SW) “Do you want a SV restaurant in the SW.”

Pros: simple, error-free, easy to control
Cons: time-consuming, poor scalability
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RNN Based Generator

Inform(name=EAT, food=British) dialog act 1-hot
representation
( 0,0100,.,10,0,.,1,0,0,0,0,0.. ]:I

SLOT_NAME serves SLOT_FOOD : <EOS>
A 1\ A A A
> > > >
I:) <BOS> SLOT_NAME serves SLOT_FOOD
<BOS> EAT serves British
delexicalisation
Weight tying
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Task-Oriented Dialogue System

Speech Signal Hypothesis
are there any action movies to
see this weekend Language Understanding (LU)
) Speech * Domain Identification
' Recognition * User Intent Detection

Text Input * Slot Filling
- Are there any action movies to see this weekend?

Semantic Frame
" :
N request_movie
gen re=action, date=this weekend

Dialogue Management (DM)
* Dialogue State Tracking (DST)
* Dialogue Policy

( Natural Language

Text response t Generation (NLG)
Where are you located?

System Action/Policy

O TN RG] TR P I e oy



NLU Pipeline

1. Domain 2. Intent
Classification W Classification

3. Slot Filling
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Domain/Task Classification

/[ find me a cheap taiwanese restaurant in oakland]

Movies Find_movie
Restaurants Buy_tickets
Sports Find_restaurant
Weather Book table

Music Find_lyrics
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Slot Filling

Slot value pairs
Is there um a cheap place in the centre of town please?

l l ll l l l l food=ltalian|

O O OO O OO 0O food=Chinese X
v v v \ 4

B-price B-area |-areal-area area=centre | /

area=north x

price=cheap
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Conventional Approach

dialogue utterances annotated with
domains/intents

machine learning classification model
e.g. support vector machine (SVM)

domains/intents

iP



Theory: Support Vector Machine

SVM is a maximum margin classifier

e Input data points are mapped into a
high dimensional feature space where
the data is linearly separable

e Support vectors are input data points
that lie on the margin

Y
/1 N
. N
Maximum.
“u /margin
™ N
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Slot Filling - Sequence Tagging

2 flights from Boston to New York today ]

flights from Boston to New York today
Entity Tag O O B-city O B-city |-city O
Slot Tag O O B-dept O B-arrival  Il-arrival B-date
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Conventional Approach

dialogue utterances annotated with slots

machine learning tagging model
e.g. conditional random fields (CRF)

slots and their values
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Theory: Conditional Random Fields

CRF assumes that the label at time step t depends on the label in the previous
time step t-1

Maximize the log probability log p(y | x) with respect to parameters A
1
ply | ) = Z(0) GXP(Z Aifi(z,y))

= H (1:1:) exp(z Nifi(T, Yt Yi—1))
t /)

N
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Deep Learning Approach

dialogue utterances annotated with
semantic frames (user intents & slots)

deep learning model (classification/tagging)
e.g. recurrent neural networks (RNN)

user intents, slots and their values
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Word Representation

The vast majority of rule-based and stad4s4cal NLP work regards
words as atomic symbols: hotel, conference, walk

In vector space terms, this is a vector with one 1 and a lot of zeroes

Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel [c 0000000001 0000] AND
hotel [oooo0oo0oo00l10000000] = O©
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Distributional similarity based representations

® You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

® One of the most successful ideas of modern statistical
NLP
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Distributional similarity based representations

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking #¥
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Distributional similarity based representations
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Male-Female
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walked

¢ swam
®)

walking 5

swimming

Verb tense

Turkey \
Ankara

Russia B
Moscow
Canada Ottawa

J O e =
o Tokyo

Vietnam Hanoi
China Beijing

Country-Capital



Deep Neural Networks for Domain/Intent
Classification — | (Sarikaya et al, 2011)

Deep belief nets (DBN)

e Unsupervised training of weights
e Fine-tuning by back-propagation
e Compared to MaxEnt, SVM, and boosting

iPavlov.

CLASS LABEL UNITS

500 HIDDEN UNITS

500 HIDDEN UNITS

500 HIDDEN UNITS

VISIBLE UNITS
(INPUT VECTORS)




DNNs for Domain/Intent Classification — Il (Tur et al.,
2012; Deng et al., 2012)

e Deep convex networks (DCN)
o Simple classifiers are stacked to learn complex functions
o Feature selection of salient n-grams

e Extension to kernel-DCN

Hidden Layer

Hidden Layer
— : —

Iinput Data
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DNNSs for Domain/Intent Classification — Ill (Ravuri
and Stolcke, 2015)

e RNN and LSTMs for utterance Wol IT
classification e EEs Ve
e Word hashing to deal with large TR Te.
number of singletons [ ] [ = ] [ ]

o Kat: #Ka, Kat, at#
o Each character n-gram is associated with
a bit in the input encoding
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Recurrent Neural Nets for Slot Tagging — | (Yao et
al, 2013; Mesnil et al, 2015)

Variations:

A. RNNs with LSTM cells

B. Input, sliding window of n-grams
C. Bi-directional LSTMs

%%

Wo W1 W W,

Wo W1 W Wy

Wy W1 Wy Wn
(a) LSTM (b) LSTM-LA (c) bLSTM-LA
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e Encoder-decoder networks

o Leverages sentence level
information

e Attention-based encoder-decoder " Wy ow, wy,
o Use of attention (as in MT) in the
encoder-decoder network

o Attention is estimated using a 0 1 2
feed-forward network with input: h
and s at time t 3 X . ©, @,
n
Wo Wi W Wy
e
hg-+-h,
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Joint Semantic Frame Parsing

Slot filling and intent prediction in the same output sequence

Intent prediction and slot filling are performed in two “heads”

___________________________

Flight

taiwanese food

(Intent)

( )

| 1

: )

: : h h, hy h,

: ) I I I ! & et (Slot Filling)

: : | = = = o} FromLoc O TolLoc

| L i b o s % 11

! 1 from LA to Seattle |

T FIND_RES ) X X, X3 Xy T \ T \ T \ T \
Slot FI”Ing hy ¢,7 hyc, ¥ hy 67 h, ¢

Prediction
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End-to-End

System Actions at j+1

LSTM ‘LSTM

LSTM f LSTM

LSTM LSTM

NLU NLU

utterj_z utterj_1 utterj

Slot Tagging Slot Tagging Slot Tagging

NLU

{ NLU

utter; 5

Slot Tagging
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E2E Dialog System - Wen et al. 2016

T T
, Intent Network ! Generation Network !
I <v.name> serves great <v.food>
 Can I have <v.food> :: Y., & A :
i 1 ' O30
11
1000 Zt 1 -_ :
I s g
: IR ST
, | Copy " I
T ' I Policy NetworkA™ field I
2 DB pointer l I
I I
1 Korean I
1 0.7 T |
: Brltlsh : Il MysaL query:| [dolz]  [2]= :
1 “ * <|S 3 <=
I & & () 1| “Select *wher| |ai3|5| /5| |
: French .x‘.z. |: food=Korean; if% g g :
I ® )
I =l

I I t I
Rl¥efefefe | :

I
; 'y Database |,
| |

|
Can | have korean Be||efTracker,' Database Operator
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Language Understanding

e Collect and annotate data
e Use machine learning method to train your system

e Conventional

o SVM for domain/intent classification
o CREF for slot filling

e Deep learning
o LSTM for domain/intent classification and slot filling

e Test your system performance
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Questions?
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Intent Classification / Slot Filling

Intent Classification (Ravuri and Stolcke, 2015)

|IOB Sequence Labeling for Slot Filling (Hakkani-Tur et al., 2016)

iEent
1 2 n HH %
1 2 Tl W Wl 2 n

iPavlov. (a) LSTM (b) LSTM-LA (c) bLSTM-LA
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